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1.0 Introduction

A variety of surveillance operations require the ability to track vehicles over a 
long period of time using sequences of images taken from a camera mounted on an 
airborne or similar platform.  In order to be able to see and track a vehicle for any length 
of time, either a persistent surveillance imager is needed that can image wide fields of 
view over a long time-span or a highly maneuverable smaller field-of-view imager is 
needed that can follow the vehicle of interest.   The algorithm described here was 
designed for the persistence surveillance case.  

In turns out that most vehicle tracking algorithms described in the 
literature[1,2,3,4] are designed for higher frame rates (> 5 FPS) and relatively short
ground sampling distances (GSD) and resolutions (~ few cm to a couple tens of cm ).   
But for our datasets, we are restricted to lower resolutions and GSD’s (≥0.5 m) and 
limited frame-rates (≤2.0 Hz). As a consequence, we designed our own simple approach
in IDL which is a deterministic, motion-guided object tracker.  The object tracking relies 
both on object features and path dynamics.   The algorithm certainly has room for future
improvements, but we have found it to be a useful tool in evaluating effects of frame-rate, 
resolution/GSD, and spectral content (eg. grayscale vs. color imaging ). A block 
diagram of the tracking approach is given in Figure 1.  We describe each of the blocks of 
the diagram in the upcoming sections.

Figure 1: Block diagram of tracking approach.
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2.0 Pre-processing:  Stabilization

The tracker treats the image sequence as if it were acquired from a stationary 
platform. As a result, it is necessary for the data to be stabilized from frame to frame.  For 
much of the data available to us, it was both geo-registered[5] and then stabilized with a
translation, rotation, and scale sensitive stabilization algorithm[6] to remove small geo-
registration errors.  In some other datasets where geo-registration was not possible we 
performed affine image registration[7] to register all the frames of the sequence to a 
reference frame.

3.0 Vehicle Selection

Before tracking can begin, it is necessary to select the object to be tracked, either 
automatically or manually.  Rather than automatically try to detect multiple vehicles and 
follow them all, the tracker simply requires that the pixel coordinates of a bounding box 
around the vehicle be supplied.  The software allows the user to input them directly or 
draw them interactively.   When using fast frame rates, it is sufficient to perform the 
vehicle initialization with a single frame, because the vehicle will not move very many 
pixels to the next frame. But with slower frame rates, it is necessary to initialize the 
tracker with boxes around the same vehicle in the first and second frames.  This allows 
the initial velocity to be known and used in the prediction of the location in the next 
frame. Figure 2 shows a box drawn around the vehicle to be tracked.  Future plans 
include working on the track initiation problem.

Figure 2: Box drawn around the target to be tracked

4.0 Mover detection

There are many motion detection algorithms described in the literature[8][9] each with its 
own strengths and weaknesses.   Eztrack was written in a modular fashion so that any 
mover detection method can be tested or used.   Since the data is always pre-stabilized
before tracking, contains small movers, and has slow frame-rates, we chose three-frame 
differencing[1] for the initial default mover detection algorithm.  It is fast for large 



datasets and can easily be adapted to multi-spectral data.  The three-frame differencing 
algorithm is quite simple:  A pixel is chosen to be moving if:
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Figure 3:  Illustration of three-frame differencing in 1-D

Where In(x) is the intensity of the pixel at spatial coordinate x for frame number n, and 
Tn(x) is a threshold defining a statistically significant intensity change at each pixel 
location which we currently define as a percentage of the maximum intensity change (i.e. 
max(∆I) * scale factor.)  This scale factor is allowed as an input to the mover detection 
routine. Typical values for this scale factor are 5% to 15%. We also allow the option to 
have the threshold vary over the image or let it be a constant value, though we have not 
exercised the variable threshold option yet.  

If the imagery is multi-channel, we have several choices.  We can form a 
grayscale intensity image from the multiple channels and proceed as before.  Or we can 
try something that takes advantage of the multiple channels, such as the popular 
Minkowski metric[11], replacing the intensity differences from Equation 1 with:
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Where k is the channel number (e.g. color - R, G, B), i is the frame number and x is over 
space.  If  p =2, equation 2 is a Euclidian distance metric.  We have found good results 
with p=3 as well. 

Once the initial mover map is created, it is necessary to remove very small 
detections and perhaps very large detections.  A blob region-size filter is applied to keep 
only mover blobs greater and/or less than a certain size. Typical minimum blob sizes are 
3 to 5 pixels, but it can vary depending on image resolution and the size of the objects of 
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interest. The effect of the threshold and minimum blob size is shown in Figure 4. It is 
possible to apply any number of image segmentation routines to the mover map to either 
enhance movers of interest or reduce uninteresting or false movers.  Future work will 
include investigation into this area.

Once the final mover map is created, it is then used to guide the tracker.

Image (In(x)) T= 5%, MinBlobSize=3 pixels

T = 5%, MinBlobSize=10 pixels           T = 5%, MinBlobSize= 50 pixels



T = 10%, MinBlobSize=3 pixels T=20 %, MinBlobSize= 3 pixels

Figure 4: Effect of Threshold and blob region size filter on the mover map.

5.0 Tracking

After getting the initial position, optional initial velocity estimate, bounding box of the 
object (section 3.0), and the mover map for each frame (section 4.0), the tracker loops 
over the frames.  At each frame it predicts the position of the object based on the previous 
position and the last known velocity (i.e. pn+1 = pn + vn ∆t )

Within a user-defined radius (e.g. typically 10 to 25 pixels) around the predicted 
position, it searches for candidate blobs in the mover map, including the stationary case
which is not part of the mover map.  The candidate blobs are identified and labeled by 
multiplying the current mover map frame by a binary circular mask with its center at the 
predicted position and with a radius of the maximum position deviation allowed.  A 
segmentation routine such as IDL’s label_region.pro is used to label each blob for the 
search. It then loops through those candidate positions, including the stationary case, and 
computes several quantities to determine where it thinks the object moved to (or didn’t 
move to).  The tracker currently uses four basic metrics to determine the object location 
in the next frame:

• Cross correlation
o The peak of the cross-correlation between the mean-removed, 

hanning-windowed object template and candidate object. (In some 
cases we tested the cross correlation of the Laplacian of the objects 
which was helpful sometimes when resolution was reduced or the 
object was small.) A running average value of the maximum 
correlation value over time is also kept.

• Path-coherence (Φ) [10]
o Checks to make sure that the direction and velocity changes in 

consecutive images are smooth.
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variables are described in Figure 5.  We found it suitable to equally 
weight w1=w2=0.5.  A value near zero means very good path 
coherence ( e.g. < 0.2)

Figure 5: Path coherence, definition of the angle θ and the distances sk
and sk+1. The Pn’s are the center positions of the objects.

• Velocity difference
o A simple difference of the potential new velocity from the previous 

velocity. (In pixels per frame, but could translate to a real velocity 
such as meters/sec).  A maximum acceptable velocity difference is set 
in the beginning of the code and can be set by the user. Typical values 
used for our data was 10 to 25 pixels/frame.

o We have this redundant metric because we found that path coherence 
alone was not sufficient to make the best choice.

• Average intensity difference for grayscale imagery, average hue difference for 
color imagery, or a minimum matched filter threshold for multi-band data.

o The average intensity, hue, or spectral matched filter is calculated over 
the moving object regions to be checked in the current frame and 
compared to that of the previous frame.  An overall threshold has to be 
met for that candidate region to be considered at all and small intensity 
or hue differences are given stronger weighting in choosing the next 
position of the object.

A somewhat complicated set of checks and cross-checks is performed on each of 
the four values to determine the next position of the object.   These checks can be easily 
modified to fit the nature of the data if need be. For example, we could put more 
emphasis on the correlation for higher resolution data or put more emphasis on the path 
dynamics for lower resolution data.  In general, we are looking to find the object that has 
the minimum average intensity (or hue) difference, highest correlation, best path 
coherence and least velocity difference.  But often, that is not the case and we find one or 
two of the values will be second or third choice.   So the trick is in how much weight to 
give to each metric and in what situations.   Sometimes the correlation will be high, but 
the path coherence or velocity difference will be bad, so the algorithm may not pick that 
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target if it finds another object that has a better path coherence and velocity difference so 
long as the correlation is higher than some threshold (a percentage of the maximum 
correlation found). The logic of one grayscale version of the algorithm is similar to the 
following:

If (IntensityDiff < Thresh(e.g. 60) )
{
 If (PeakCorr > MaxPeakCorr) OR 

(PathCoh<0.25 AND PeakCorr>0.5*AvgCorr AND VelDif<MinVelDif) OR
(PathCoh<0.05 AND PeakCorr>0.2*AvgCorr AND VelDif<MinVelDif*0.25)

{ 
If (VelDif < MinVelDif AND PathCoh<MinPathCoh ) OR

{VelDif < MinVelDif AND PeakCorr>MaxPeakCorr)
{

Update MaxPeakCorr
Update MinPathCoh
Update MinVelDif
Update Mover choice

}
}

}

If no objects can be found with high enough correlation or good enough path 
dynamics, then the tracker indicates that there was no match and will assume the target 
became occluded and predict the location of the object in the next frame and search again 
in the frame after that.  The prediction simply sets pn+1 = pn + vn ∆t, and it does not 
update the template of the object in that case.  If after a pre-defined number of frames 
(e.g. 2 to 5) the object is not picked up again, it assumes the object is lost and stops trying 
to track it.

A text file with the object position (center), bounding boxes, and velocities is 
saved for future use such as displaying multiple tracks back on the data.  The object 
template sequences can also be saved.

Figure 6 shows sample frames of the detected track overlaid on a stationary car 
that begins to move and turn a corner.  The GSD is 0.5 m and the frame-rate is 2.0 Hz. 

 



Initial frame with user drawn box  Detected car location after 30 frames

Detected location after 40 frame               Detected location after 45 frames

Figure 6:  Tracking example where a car is stationary for 30 frames then starts to move 
and turn a corner.

Summary and Conclusions

The optimal metrics and how best to use them in tracking vehicles or other objects
is still under investigation, but the current tracker implementation works satisfactorily 
(>70-80% success rate) on many of the datasets we have access to with variable 
resolutions and frame-rates. Of course, it works best in uncluttered environments with 
distinct looking vehicles (Resolution/GSD < 1 m/pixel) and at better frame rates (>1 Hz), 
but we have demonstrated good performance at the 0.5 Hz rates depending on resolution 
and traffic density. Future work on this tracker will include expanding it to multiple 
vehicles, alternative mover detection schemes, allowing the bounding box to change size,
and continued work on best choice and use of the track feature metrics.
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